1. **QSAR identifier**

1.1. **QSAR identifier (title):**

 QSAR model for female rat carcinogenicity (TD50) of nitro compounds

1.2. **Other related models:**

1.3. **Software coding the model:**

 QSARModel 3.5.0 Molcode Ltd., Turu 2, Tartu, 51014, Estonia
 http://www.molcode.com

2. **General information**

2.1. **Date of QMRF:**

 21.08.2009

2.2. **QMRF author(s) and contact details:**

 [1] Indrek Tulp Molcode Ltd. Turu 2, Tartu, 51014, Estonia
 models@molcode.com http://www.molcode.com

 [9] Eneli Härk Molcode Ltd. Turu 2, Tartu, 51014, Estonia
 models@molcode.com http://www.molcode.com

 [10] Andres Kreegipuu Molcode Ltd. Turu 2, Tartu, 51014, Estonia
 models@molcode.com http://www.molcode.com

 models@molcode.com http://www.molcode.com

2.3. **Date of QMRF update(s):**

 -

2.4. **QMRF update(s):**

 -

2.5. **Model developer(s) and contact details:**
2.6. Date of model development and/or publication:

21.08.2009

2.7. Reference(s) to main scientific papers and/or software package:

2.8. Availability of information about the model:

All information in full detail is available.

2.9. Availability of another QMRF for exactly the same model:

No other QMRF available for the same model

3. Defining the endpoint - OECD Principle 1

3.1. Species:

female rat

3.2. Endpoint:

3.3. Comment on endpoint:

-

3.4. Endpoint units:

mg/kg body wt/day

3.5. Dependent variable:

log(TD50) TD50 is the median toxic dose, the dose that produces a toxic effect in 50% of the population.

3.6. Experimental protocol:

Carcinogenicity was determined using the EU Test Guideline B.32. This method describes the administration of test substance normally seven days per week, by an appropriate route, to several groups of experimental animals, one dose per group, for a major portion of their lifespan, and the daily observation of experimental animals for detection of signs of toxicity, particularly the development of tumours. Chemical carcinogens have been categorized as either genotoxic or non-genotoxic. The former are DNA reactive and the latter act by a variety of other mechanisms. The toxicological property of interest was the carcinogenic potency, expressed as TD50 value. The TD50 value for a given target site (s) in the absence of tumors in control animals, was taken to be the chronic dose (in mg/kg body wt/day) which induced tumors in half of the test animals at the end of a standard lifespan for the species (Gold et al., 1999). The TD50 value used for each compound was selected by taking into account the lowest carcinogenic potency value reported for each chemical in all the positive reports for that chemical. A data set of aromatic
and aliphatic nitro-compounds was collected from the Carcinogenic Potency Database (CPDB) established by Gold and Zeiger (1997). The CPDB is a single standardized resource of information from many chronic, long-term bioassays. It contains a large diversity of chemical structures, and includes tumour data reproduced from all of the NCI/NTP rodent bioassay Technical Reports, as well as additional data extracted from over 1200 literature sources (CPDB-Lit) subjected to extensive review (Gold et al., 1999). The data from the female rat of the CPDB-Lit reports were used. According to Gottmann et al. (2001) the tests on rats seem to be far more reproducible than the mouse and experiments on female rats had a better concordance than those on male rats.

References

3.7. Endpoint data quality and variability:
Experimental data is most probably not from one lab but the data from the database has been validated as consistent (ref. Toxicology 220(2006) 51-62) Statistics: max value: 3.770 min value: -0.590 standard deviation: 0.820 skewness: 1.014

4. Defining the algorithm - OECD Principle 2

4.1. Type of model:
2D and 3D regression-based QSAR Multilinear regression model based on 3-D quantum chemical descriptors.

4.2. Explicit algorithm:
multilinear regression QSAR
QSAR model based on
\[
\text{Log(TD50)} = -0.69 - 9.44E-002 * \text{1 X GAMMA polarizability(DIP)} \text{(AM1)} + 0.13 * \text{Lowest coulombic interaction (AM1)} - 48.44 * \text{FNSA 3 Fractional PNSA (PNSA-3/TMSA) (Zefirov)} + 0.29 * \text{WFOSA Atomic charge (Zefirov) weighted FOSA}
\]

4.3. Descriptors in the model:
[1] 1 X GAMMA polarizability(DIP) (AM1)
[2] Lowest coulombic interaction (AM1)
[4] WFOSA Atomic charge (Zefirov) weighted FOSA
4.4. **Descriptor selection:**
Initial pool of ~1000 descriptors. Stepwise descriptor selection based on a set of statistical selection rules (1-parameter equations: Fisher criterion and R2 over threshold, variance and t-test value over threshold, intercorrelation with another descriptor not over threshold), (2 parameter equations: intercorrelation coefficient bellow threshold, significant correlation with endpoint in terms of correlation coefficient and t-test). Stepwise trial of additional descriptors not significantly correlated to any already in the model.

4.5. **Algorithm and descriptor generation:**
1D, 2D, and 3D theoretical calculations quantum chemical descriptors derived from AM1 calculation. Model developed by using multilinear regression.

4.6. **Software name and version for descriptor generation:**
QSARModel 3.3.5
QSAR/QSPR package that will compute chemically meaningful descriptors and includes statistical tools for regression modeling
Molcode Ltd, Turu 2, Tartu, 51014, Estonia
http://www.molcode.com

4.7. **Descriptors/Chemicals ratio:**
0.095

5. **Defining the applicability domain - OECD Principle 3**

5.1. **Description of the applicability domain of the model:**
By chemical identity: nitrocompounds
By descriptor value range: The model is suitable for compounds that have the descriptors in the following range: 1 X GAMMA polarizability (DIP) (AM1) (min: 0.714, max: 12.844), Lowest coulombic interaction (AM1) (min: -18.941, max: 5.018), FNSA 3 Fractional PNSA (PNSA-3/TMSA) (Zefirov) (min: -6.400•10-2, max: -1.190•10-2), WFOSA Atomic charge (Zefirov) weighted FOSA (min: 0.000, max: 8.700).

5.2. **Method used to assess the applicability domain:**
presence of functional groups in structures
Range of descriptor values in training set with ±30% confidence
Descriptor values must fall between maximal and minimal descriptor values of training set ± 30%

5.3. **Software name and version for applicability domain assessment:**
QSARModel 3.3.5
QSAR/QSPR package that will compute chemically meaningful descriptors and includes statistical tools for regression modeling
Molcode Ltd, Turu 2, Tartu, 51014, Estonia
http://www.molcode.com

5.4. **Limits of applicability:**

6. **Internal validation - OECD Principle 4**
6.1. Availability of the training set:
Yes

6.2. Available information for the training set:
CAS RN: Yes
Chemical Name: Yes
Smiles: No
Formula: No
INChI: No
MOL file: Yes

6.3. Data for each descriptor variable for the training set:
All

6.4. Data for the dependent variable for the training set:
All

6.5. Other information about the training set:
data points: 42, negative: 4, positive values: 38

6.6. Pre-processing of data before modelling:
-

6.7. Statistics for goodness-of-fit:
The model has been trained with 46 chemicals. \(R^2 = 0.730 \) (Correlation coefficient); \(s = 0.200 \) (Standard error of the estimate); \(F = 25.180 \) (Fisher function);

6.8. Robustness - Statistics obtained by leave-one-out cross-validation:
\(R_{2cv} = 0.660 \) LOO

6.9. Robustness - Statistics obtained by leave-many-out cross-validation:
\(R_{2cv} = 0.757 \) LMO

6.10. Robustness - Statistics obtained by Y-scrambling:
-

6.11. Robustness - Statistics obtained by bootstrap:
-

6.12. Robustness - Statistics obtained by other methods:
ABC analysis (2:1 training : prediction) on sorted data divided into 3 subsets (A; B; C). Training set formed with 2/3 of the compounds (set A+B, A+C, B+C) and validation set consisted of 1/3 of the compounds (C, B, A) average \(R^2 \) (fitting) = 0.740average \(R^2 \) (prediction) = 0.686

7. External validation - OECD Principle 4

7.1. Availability of the external validation set:
Yes

7.2. Available information for the external validation set:
CAS RN: Yes
Chemical Name: Yes
Smiles: No
Formula: No
INChI: No
MOL file: Yes
7.3. Data for each descriptor variable for the external validation set: All
7.4. Data for the dependent variable for the external validation set: All
7.5. Other information about the external validation set:
 data points: 4, negative: 0, positive values: 4
7.6. Experimental design of test set:
The full experimental dataset was sorted according to increasing values of logTD50 and compounds 5, 15, 35, 45 in the list have been assigned to the test set.
7.7. Predictivity - Statistics obtained by external validation:
 \(R_{2cv} = 0.942 \)
7.8. Predictivity - Assessment of the external validation set:
The descriptors for the test set are in the limits of applicability
7.9. Comments on the external validation of the model:
The validation R2 for the test set is very good.

8. Providing a mechanistic interpretation - OECD Principle 5

8.1. Mechanistic basis of the model:
The model reflects structural features which are characteristic to carcinogenicity. The toxic effect of the compounds increase with increased polarizability and increased negative partial charges values in the molecule. The increased polarizability of the molecule and the increased values of the charges enable stronger interaction of the molecules with the DNA, and as a result, an increased carcinogenicity.

8.2. A priori or a posteriori mechanistic interpretation:
a posteriori mechanistic interpretation, consistent with published scientific interpretations of experiments.

8.3. Other information about the mechanistic interpretation:
The carcinogenic effect increases with increased values of the descriptors 1X GAMMA polarizability (DIP) (AM1) and FNSA 3 Fractional PNSA (PNSA-3/TMSA) (Zefirov). The descriptor Lowest coulombic interaction (AM1) and the descriptor WFOSA Atomic charge (Zefirov) weighted FOSA have higher values for less toxic compounds. The latter descriptor is a measure of the polarity of the hydrophobic part of the solvent accessible surface area, as it is weighted by the partial charges of the hydrogen and sp3 hybridized carbon atoms.

9. Miscellaneous information

9.1. Comments:
The data from the female rat were used. According to Gottmann et al., 2001 E. Gottmann, S. Kramer, B. Pfahringer and Ch. Helma, Data quality in predictive toxicology: reproducibility of rodent carcinogenicity experiments, Environ. Health Perspect 109 (2001), pp. 1–11. Gottmann et al. (2001) the tests on rats seem to be far more reproducible than the mouse and experiments on female rats had a better concordance than
those on male rats.

9.2. Bibliography:
Quantitative structure activity relationship for the computational prediction of nitrocompounds carcinogenicity, Aliuska Helguera Morales, Miguel Ángel Cabrera Pérez, Robert D. Combes, Maykel Pérez González, Toxicology, Volume 220, Issue 1, 1 March 2006, Pages 51-62.

9.3. Supporting information:
Training set(s) Test set(s) Supporting information

10. Summary (ECB Inventory)
10.1. QMRF number:
10.2. Publication date:
10.3. Keywords:

10.4. Comments: